Abstract

An all-digital cycle-controlled delay-locked loop (DLL) is presented to achieve wide range operation, fast lock and process immunity. Utilizing the cycle-controlled delay unit, the proposed DLL reuses the delay units to enlarge the operating frequency range rather than cascade a huge number of delay units. Adopting binary search scheme, the two-step successive-approximation-register (SAR) controller ensures the proposed DLL to lock the input clock within 32 clock cycles regardless of input frequencies. The DLL operates in open-loop fashion once lock occurs in order to achieve low jitter operation with small area and low power dissipation. Since the DLL will not track temperature or supply variations once it is in lock, it is best suited for burst mode operation. Given a supplied reference input with 50% duty cycle, the DLL generates an output clock with the duty cycle of nearly 50% over the entire operating frequency range. Fabricated in a 0.18-/spl mu/m CMOS one-poly six-metal (1P6M) technology, the experimental prototype exhibits a wide locking range from 2 to 700 MHz while consuming a maximum power of 23 mW. When the operating frequency is 700 MHz, the measured peak-to-peak jitter and rms jitter is 17.6 ps and 2.0 ps, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.