Abstract
In terms of an arbitrary limit process T, defined abstractly for real functions, we define in a novel way a T-continuous integral of Perron type, admitting mean value theorems, integration by parts and the analogue of the Marcinkiewicz theorem for the ordinary Perron integral. The integral is shown to include, as particular cases, the various known continuous, approximately continuous, cesàro-continuous, mean-continuous and proximally Cesàro-continuous integrals of Perron and Denjoy types. An interesting generalization of the classical Lebesgue decomposition theorem is also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.