Abstract

A low voltage and wide locking range injection-locked frequency divider using a standard 0.18-μm complementary metal oxide semiconductor (CMOS) process is presented. The wide locking range and the low-voltage operation are performed by adding an injection nMOS between the differential outputs of the divider that contains on-chip transformers which result in positive feedback loops to swing the output signals above the supply and below the ground potential. This dual-swing capability maximizes the carrier power and achieves low-voltage performance. The measurement results show that at the supply voltage of 0.75-V, the divider free-running frequency is 2.02 GHz, and at the incident power of 0 dBm the locking range is about 1.49 GHz (36.88%), from the incident frequency 3.27 to 4.64GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.