Abstract

This work presents a whole-year simulation study on nonlinear mixed-integer Model Predictive Control (MPC) for a complex thermal energy supply system which consists of a heat pump, stratified water storages, free cooling facilities, and a large underground thermal storage. For solution of the arising Mixed-Integer Non-Linear Programs (MINLPs) we apply an existing general and optimal-control-suitable decomposition approach. To compensate deviation of forecast inputs from measured disturbances, we introduce a moving horizon estimation step within the MPC strategy. The MPC performance for this study, which consists of more than 50,000 real-time suitable MINLP solutions, is compared to an elaborate conventional control strategy for the system. It is shown that MPC can significantly reduce the yearly energy consumption while providing a similar degree of constraint satisfaction, and autonomously identify previously unknown, beneficial operation modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.