Abstract

The Dark Reader optical system (Clare Chemical Research, Denver, CO, USA) uses relatively low intensity broad-band visible blue light in combination with broad-band optical filters to detect fluorescence with a level of sensitivity that often surpasses that of UV transilluminators and can rival that of laser-based scanners. Applications of DR (Clare Chemical Research) devices include the detection of DNA and SYBR-stained protein samples following, and also during, electrophoresis. Unlike laser-based imaging systems, the fluorescence is directly visible to the user as well as being fully compatible with charge-coupled device (CCD) and Polaroid camera-based detection and imaging. Additionally, the DR optical system functions well in multicolor fluorophor environments. Because the Dark Reader does not emit any UV light, the extent of DNA damage incurred when visualizing DNA samples is drastically reduced compared to the damage produced by a UV device and this can have a significant benefit on downstream cloning protocols. Furthermore, dye photobleaching is minimal, extending the length of time that a fluorescent sample is visible. The inherent flexibility of the DR optical system allows many different configurations of the Dark Reader to be constructed such as transilluminators, hand lamps and integrated transilluminator-electrophoresis units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call