Abstract
We present a catalogue of 73,221 white dwarf candidates extracted from the astrometric and photometric data of the recently published Gaia DR2 catalogue. White dwarfs were selected from the Gaia Hertzsprung-Russell diagram with the aid of the most updated population synthesis simulator. Our analysis shows that Gaia has virtually identified all white dwarfs within 100 pc from the Sun. Hence, our sub-population of 8,555 white dwarfs within this distance limit and the colour range considered, $-\,0.52<(G_{\rm BP}-G_{\rm RP})<0.80$, is the largest and most complete volume-limited sample of such objects to date. From this sub-sample we identified 8,343 CO-core and 212 ONe-core white dwarf candidates and derived a white dwarf space density of $4.9\pm0.4\times10^{-3}\,{\rm pc^{-3}}$. A bifurcation in the Hertzsprung-Russell diagram for these sources, which our models do not predict, is clearly visible. We used the Virtual Observatory tool VOSA to derive effective temperatures and luminosities for our sources by fitting their spectral energy distributions, that we built from the UV to the NIR using publicly available photometry through the Virtual Observatory. From these parameters, we derived the white dwarf radii. Interpolating the radii and effective temperatures in hydrogen-rich white dwarf cooling sequences, we derived the surface gravities and masses. The Gaia 100 pc white dwarf population is clearly dominated by cool ($\sim$ 8,000 K) objects and reveals a significant population of massive ($M \sim 0.8 M_{\odot}$) white dwarfs, of which no more than $\sim$ $30-40 \%$ can be attributed to hydrogen-deficient atmospheres, and whose origin remains uncertain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.