Abstract
Wheel slip control, as a basis for vehicle stability control, prevents loss of traction. A new wheel slip control approach that does not require chassis velocity is proposed in this paper. The proposed approach uses the wheel speeds and the chassis acceleration measured on the acceleration sensor to estimate the maximum tire-road friction. Then, the motor torque is constrained using the maximum tire-road friction. To ensure the vehicle starts smoothly and to enhance its acceleration performance, a fuzzy controller is used to determine whether the output torque should be constrained. The main advantage of this approach is that it is indifferent to the vehicle mass and driving resistance. Hardware-in-the-loop (HIL) simulation results validated that the proposed approach could improve the vehicle stability when the vehicle corners on slippery conditions, which is attributable to the approach's robustness to vehicle mass and driving resistance. Moreover, HIL simulation proved that it was feasible to implement the proposed approach in real vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.