Abstract
A neural network recognition and tracking system is proposed for classification of radar pulses in autonomous Electronic Support Measure systems. Radar type information is considered with position-specific information from active emitters in a scene. Type-specific parameters of the input pulse stream are fed to a neural network classifier trained on samples of data collected in the field. Meanwhile, a clustering algorithm is used to separate pulses from different emitters according to position-specific parameters of the input pulse stream. Classifier responses corresponding to different emitters are separated into tracks, or trajectories, one per active emitter, allowing for more accurate identification of radar types based on multiple views of emitter data along each emitter trajectory. Such a What-and-Where fusion strategy is motivated by a similar subdivision of labor in the brain. The fuzzy ARTMAP neural network is used to classify streams of pulses according to radar type using their functional parameters. Simulation results obtained with a radar pulse data set indicate that fuzzy ARTMAP compares favorably to several other approaches when performance is measured in terms of accuracy and computational complexity. Incorporation into fuzzy ARTMAP of negative match tracking (from ARTMAP-IC) facilitated convergence during training with this data set. Other modifications improved classification of data that include missing input pattern components and missing training classes. Fuzzy ARTMAP was combined with a bank of Kalman filters to group pulses transmitted from different emitters based on their position-specific parameters, and with a module to accumulate evidence from fuzzy ARTMAP responses corresponding to the track defined for each emitter. Simulation results demonstrate that the system provides a high level of performance on complex, incomplete and overlapping radar data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.