Abstract
Whale Optimization Algorithm (WOA), as a new population-based optimization algorithm, performs well in solving optimization problems. However, when tackling high-dimensional global optimization problems, WOA tends to fall into local optimal solutions and has slow convergence rate and low solution accuracy. To address these problems, a whale optimization algorithm based on quadratic interpolation (QIWOA) is presented. On the one hand, a modified exploration process by introducing a new parameter is proposed to efficiently search the regions and deal with the premature convergence problem. On the other hand, quadratic interpolation around the best search agent helps QIWOA to improve the exploitation ability and the solution accuracy. Moreover, the algorithm tries to make a balance between exploitation and exploration. QIWOA is compared with several state-of-the-art algorithms on 30 high-dimensional benchmark functions with dimensions ranging from 100 to 2000. The experimental results show that QIWOA has faster convergence rate and higher solution accuracy than both WOA and other population-based algorithms. For functions with a flat or sharp bottom, QIWOA is difficult to find the global optimum, but it still performs best compared with other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.