Abstract

Local hemostats still face obstacles to efficiently achieving hemostasis and promoting wound healing. Herein, a series of multifunctional well-degradable hemostatic sponges based-on carboxymethylated yeast β-glucan (CMYG) were fabricated by lyophilization. The porous CMYG sponge not only could absorb blood quickly (44.12 g/g), but also possessed unexpected tissue adhesion (∼30 kPa), and it represented good biocompatibility in vitro on fibroblasts and red blood cells. Notably, compared with the commercial Celox™, the CMYG sponge achieved more rapid hemostasis and significantly reduced blood loss in liver injury rat models by rapid wound block. Interestingly, the developed sponge showed an outstanding effect on antioxidant, anti-infection, anti-inflammatory, and cell proliferation, which are beneficial for further wound repair. Overall, these results suggest that the CMYG sponge is a promising candidate for the clinical management of uncontrollable hemorrhage and the further development of wound dressing materials throughout skin defect repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call