Abstract

Active Flux is a third order accurate numerical method which evolves cell averages and point values at cell interfaces independently. It naturally uses a continuous reconstruction, but is stable when applied to hyperbolic problems. In this work, the Active Flux method is extended for the first time to a nonlinear hyperbolic system of balance laws, namely, to the shallow water equations with bottom topography. We demonstrate how to achieve an Active Flux method that is well-balanced, positivity preserving, and allows for dry states in one spatial dimension. Because of the continuous reconstruction all these properties are achieved using new approaches. To maintain third order accuracy, we also propose a novel high-order approximate evolution operator for the update of the point values. A variety of test problems demonstrates the good performance of the method even in presence of shocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call