Abstract

BackgroundAlignment-free methods for comparing protein sequences have proved to be viable alternatives to approaches that first rely on an alignment of the sequences to be compared. Much work however need to be done before those methods provide reliable fold recognition for proteins whose sequences share little similarity. We have recently proposed an alignment-free method based on the concept of string kernels, SeqKernel (Nojoomi and Koehl, BMC Bioinformatics, 2017, 18:137). In this previous study, we have shown that while Seqkernel performs better than standard alignment-based methods, its applications are potentially limited, because of biases due mostly to sequence length effects.MethodsIn this study, we propose improvements to SeqKernel that follows two directions. First, we developed a weighted version of the kernel, WSeqKernel. Second, we expand the concept of string kernels into a novel framework for deriving information on amino acids from protein sequences.ResultsUsing a dataset that only contains remote homologs, we have shown that WSeqKernel performs remarkably well in fold recognition experiments. We have shown that with the appropriate weighting scheme, we can remove the length effects on the kernel values. WSeqKernel, just like any alignment-based sequence comparison method, depends on a substitution matrix. We have shown that this matrix can be optimized so that sequence similarity scores correlate well with structure similarity scores. Starting from no information on amino acid similarity, we have shown that we can derive a scoring matrix that echoes the physico-chemical properties of amino acids.ConclusionWe have made progress in characterizing and parametrizing string kernels as alignment-based methods for comparing protein sequences, and we have shown that they provide a framework for extracting sequence information from structure.

Highlights

  • Alignment-free methods for comparing protein sequences have proved to be viable alternatives to approaches that first rely on an alignment of the sequences to be compared

  • We propose to use a weighted string kernel that provides an alignment-free measure of the similarity of two protein sequences

  • This leads, to an interesting inverse problem: can we identify a substitution matrix that provides the maximum similarity between sequence comparison scores and structure comparison scores, and what is this optimized substitution matrix telling us about amino acids? As the equations defining the weighted string kernel provide analytical expressions for the sequence similarity score with respect to the scores for amino acid comparisons, we are in the right conditions to answer this question

Read more

Summary

Introduction

Alignment-free methods for comparing protein sequences have proved to be viable alternatives to approaches that first rely on an alignment of the sequences to be compared. We have recently proposed an alignment-free method based on the concept of string kernels, SeqKernel (Nojoomi and Koehl, BMC Bioinformatics, 2017, 18:137). In this previous study, we have shown that while Seqkernel performs better than standard alignment-based methods, its applications are potentially limited, because of biases due mostly to sequence length effects. A solution to this limitation was proposed, the so-called spaced seeds methods that defines patterns with match and possible don’t care positions [18,19,20,21] Another class of alignment-free methods for comparing protein sequences that are directly relevant to this work are the string kernel based methods [22,23,24,25,26,27,28,29]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call