Abstract
In many real-world applications, the costs of different errors are often unequal. Therefore, the inclusion of costs into learning, also named cost-sensitive learning, has been regarded as one of the most relevant topics of future machine learning research. Rough set theory is a powerful mathematic tool dealing with inconsistent information for attribute dependence analysis, knowledge reduction and decision rule extraction. However, it is insensitive to the costs of misclassification due to the absence of a mechanism of considering the subjective knowledge. This paper discusses problems connected with introducing the subjective knowledge into rough set learning and proposes a weighted rough set approach for cost-sensitive learning. In this method, weights are employed to represent the subjective knowledge of costs and a weighted information system is defined firstly. With the introduction of weights, weighted attribute dependence analysis is carried out and an index of weighted approximate quality is given. Furthermore, weighted attribute reduction algorithm and weighted rule extraction algorithm are designed to find the reducts and rules with the consideration of weights. Based on the proposed weighted rough set, a series of comparing experimentations with several familiar general techniques on cost-sensitive learning are constructed. The results show that the approach of weighted rough set produces averagely the minimum misclassification costs and the lowest high cost errors.KeywordsWeighted rough setknowledge reductionrule extractioncost-sensitive learning
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.