Abstract

In this paper, we present a parametric LTI system identification approach, which is based on weighted principal component regression (PCR). It can be shown that this method asymptotically implements model selection in the frequency domain and allows the data to play a significant role in determining the candidate models. Moreover, the estimates of the optimal model parameters reflect a trade-off between bias and variance to reach a relatively small mean squared prediction error. Compared with the conventional autoregressive exogenous input (ARX) identification, our approach is shown to identify the system's impulse response function more accurately when the input signal is colored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.