Abstract
ABSTRACTThe family of weighted Poisson distributions offers great flexibility in modeling discrete data due to its potential to capture over/under-dispersion by an appropriate selection of the weight function. In this paper, we introduce a flexible weighted Poisson distribution and further study its properties by using it in the context of cure rate modeling under a competing cause scenario. A special case of the new distribution is the COM-Poisson distribution which in turn encompasses the Bernoulli, Poisson, and geometric distributions; hence, many of the well-studied cure rate models may be seen as special cases of the proposed model. We focus on the estimation, through the maximum likelihood method, of the cured proportion and the properties of the failure time of the susceptibles/non cured individuals; a profile likelihood approach is also adopted for estimating the parameters of the weighted Poisson distribution. A Monte Carlo simulation study demonstrates the accuracy of the proposed inferential method. Finally, as an illustration, we fit the proposed model to a cutaneous melanoma data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.