Abstract

AbstractThermodynamic distance functions are important components in the construction of DNA codes and DNA codewords are structural and information building blocks in biomolecular computing and other biotechnical applications that employ DNA hybridization assays. We introduce new metrics for DNA code design that capture key aspects of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. We introduce the concept of (t-gap) block isomorphic subsequences to describe new string metrics that are similar to the weighted Levenshtein insertion-deletion metric. We show how our new distances can be calculated by a generalization of the folklore longest common subsequence dynamic programming algorithm. We give a Varshamov-Gilbert like lower bound on the size of some of codes using our distance functions as constraints. We also discuss software implementation of our DNA code design methods.KeywordsNear NeighborReverse ComplementLonge Common SubsequenceBlock RepresentationNear Neighbor ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.