Abstract
In this paper, we address Hardy–Hilbert-type inequality by virtue of constructing weight coefficients and introducing parameters. By using the Euler–Maclaurin summation formula, Abel’s partial summation formula, and differential mean value theorem, a new weighted Hardy–Hilbert-type inequality containing two partial sums can be proven, which is a further generalization of an existing result. Based on the obtained results, we provide the equivalent statements of the best possible constant factor related to several parameters. Also, we illustrate how the inequalities obtained in the main results can generate some new Hardy–Hilbert-type inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.