Abstract

Beamforming is a linear technique aimed at processing array signals in order to enhance incoming signals from a selected steering direction and to abate incoming signals from any other direction1. Thanks to its flexibility, beamforming can be successfully employed in many application fields with different objectives. In any case, if the array works under far-field conditions, the delays required by the beamforming operation can be easily computed in an exact way, whereas, if it works under near-field conditions, the focalization of beamforming is required to take into account the curvature of waves. In the latter case, a fast computation of the exact delays is often prohibitive, then an approximate version is preferred: generally, the Fresnel approximation (obtained by the expansion of the time-independent free-space Green’s function2,3) is adopted1. Moreover, the Fresnel approximation makes it possible to apply the Fast Fourier Transform (FFT) in the implementation of beamforming even when focalization is necessary4, thus resulting in a great computational profit. Despite its simplicity and advantages, the Fresnel approximation has a well defined region of validity2 that forces potential steering directions to be contained inside a narrow scanning region. This constraint is heavy in applications (e.g., acoustic imaging) that require a wide region of view, for both medical and underwater investigations. To avoid this drawback, some imaging techniques that do not need the Fresnel approximation have been devised5,6 but, unfortunately, they increase the computational load and/or the system complexity.KeywordsFast Fourier TransformFocalization DistanceValidity RegionProcess Array SignalScanning RegionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.