Abstract

Weight initialization plays an important role in training neural networks and also affects tremendous deep learning applications. Various weight initialization strategies have already been developed for different activation functions with different neural networks. These initialization algorithms are based on minimizing the variance of the parameters between layers and might still fail when neural networks are deep, e.g., dying ReLU. To address this challenge, we study neural networks from a nonlinear computation point of view and propose a novel weight initialization strategy that is based on the linear product structure (LPS) of neural networks. The proposed strategy is derived from the polynomial approximation of activation functions by using theories of numerical algebraic geometry to guarantee to find all the local minima. We also provide a theoretical analysis that the LPS initialization has a lower probability of dying ReLU comparing to other existing initialization strategies. Finally, we test the LPS initialization algorithm on both fully connected neural networks and convolutional neural networks to show its feasibility, efficiency, and robustness on public datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.