Abstract

We introduce a high-order weight-adjusted discontinuous Galerkin (WADG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in anisotropic porous media. We use a coupled first-order symmetric stress-velocity formulation [1,2]. Careful attention is directed at (a) the derivation of an energy-stable penalty-based numerical flux, which offers high-order accuracy in presence of material discontinuities, and (b) proper treatment of micro-heterogeneities (sub-element variations) in the numerical scheme. The use of a penalty-based numerical flux avoids the diagonalization of Jacobian matrices into polarized wave constituents necessary when solving element-wise Riemann problems. Micro-heterogeneities are accurately and stably incorporated in the numerical scheme using easily-invertible weight-adjusted mass matrices [3]. The convergence of the proposed numerical scheme is proven and verified by using convergence studies against analytical plane wave solutions. The proposed method is also compared against an existing implementation using the spectral element method to solve the poroelastic wave equation [4].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.