Abstract
A consecutive k-within-m-out-of-n system consists of n identical and stochastically independent components arranged on a line. The system will fail if and only if within m consecutive components, there are at least k failures. Let Tn be the system's lifetime. Then, under quite general conditions we prove that there is a positive constant a such that the random variable n1/kaTn converges to a Weibull distribution as n →∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.