Abstract
Determining the similarity of short text snippets, such as search queries, works poorly with traditional document similarity measures (e.g., cosine), since there are often few, if any, terms in common between two short text snippets. We address this problem by introducing a novel method for measuring the similarity between short text snippets (even those without any overlapping terms) by leveraging web search results to provide greater context for the short texts. In this paper, we define such a similarity kernel function, mathematically analyze some of its properties, and provide examples of its efficacy. We also show the use of this kernel function in a large-scale system for suggesting related queries to search engine users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.