Abstract

With the ever increasing number of Web services, discovering an appropriate Web service requested by users has become a vital yet challenging task. We need a scalable and efficient search engine to deal with the large volume of Web services. The aim of this approach is to provide an efficient search engine that can retrieve the most relevant Web services in a short time. The proposed Web service search engine (WSSE) is based on the probabilistic topic modeling and clustering techniques that are integrated to support each other by discovering the semantic meaning of Web services and reducing the search space. The latent Dirichlet allocation (LDA) is used to extract topics from Web service descriptions. These topics are used to group similar Web services together. Each Web service description is represented as a topic vector, so the topic model is an efficient technique to reduce the dimensionality of word vectors and to discover the semantic meaning that is hidden in Web service descriptions. Also, the Web service description is represented as a word vector to address the drawbacks of the keyword-based search system. The accuracy of the proposed WSSE is compared with the keyword-based search system. Also, the precision and recall metrics are used to evaluate the performance of the proposed approach and the keyword-based search system. The results show that the proposed WSSE based on LDA and clustering outperforms the keyword-based search system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.