Abstract

Multimodal retrieval has received widespread consideration since it can commendably provide massive related data support for the development of computational social systems (CSSs). However, the existing works still face the following challenges: 1) rely on the tedious manual marking process when extended to CSS, which not only introduces subjective errors but also consumes abundant time and labor costs; 2) only using strongly aligned data for training, lacks concern for the adjacency information, which makes the poor robustness and semantic heterogeneity gap difficult to be effectively fit; and 3) mapping features into real-valued forms, which leads to the characteristics of high storage and low retrieval efficiency. To address these issues in turn, we have designed a multimodal retrieval framework based on web-knowledge-driven, called <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">unsupervised and robust graph convolutional hashing</i> (URGCH). The specific implementations are as follows: first, a “ <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">secondary semantic self-fusion</i> ” approach is proposed, which mainly extracts semantic-rich features through pretrained neural networks, constructs the joint semantic matrix through semantic fusion, and eliminates the process of manual marking; second, a “ <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">adaptive computing</i> ” approach is designed to construct enhanced semantic graph features through the knowledge-infused of neighborhoods and uses graph convolutional networks for knowledge fusion coding, which enables URGCH to sufficiently fit the semantic modality gap while obtaining satisfactory robustness features; Third, combined with hash learning, the multimodality data are mapped into the form of binary code, which reduces storage requirements and improves retrieval efficiency. Eventually, we perform plentiful experiments on the web dataset. The results evidence that URGCH exceeds other baselines about <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1\%$</tex-math> </inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3.7\%$</tex-math> </inline-formula> in mean average precisions (MAPs), displays superior performance in all the aspects, and can meaningfully provide multimodal data retrieval services to CSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.