Abstract

Autonomous on-line knowledge discovery and acquisition play an important role in cognitive informatics, cognitive computing, knowledge engineering, and computational intelligence. On the basis of the latest advances in cognitive informatics and denotational mathematics, this paper develops a web knowledge discovery engine for web document restructuring and comprehension, which decodes on-line knowledge represented in informal documents into cognitive knowledge represented by concept algebra and concept networks. A visualized concept network explorer and a semantic analyzer are implemented to capture and refine queries based on concept algebra. A graphical interface is built using concept and semantic models to refine users’ queries. To enable autonomous information restructuring by machines, a two-level knowledge base that mimics human lexical/syntactical and semantic cognition is introduced. The information restructuring model provides a foundation for automatic concept indexing and knowledge extraction from web documents. The web knowledge discovery engine extends machine learning capability from imperative and adaptive information processing to autonomous and cognitive knowledge processing with unstructured documents in natural languages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.