Abstract

PurposeTo present an alternative arthroscopic rip-stop technique with a single suture tape weaved through the tendon from anterior to posterior and to biomechanically test its strength against a control technique consisting of a single-row repair with simple sutures.MethodsThis was a controlled biomechanical study. Dissection and harvesting of the supraspinatus muscle-tendon unit were performed along the cable in 9 matched-pair cadaveric shoulders. Samples were divided into 2 groups: simple suture repair only (SSR) and simple suture repair with rip-stop (SSPR). Biomechanical testing was performed with an initial preload, followed by cyclic loading and then ramp to failure. Peak-to-peak displacement, stiffness (in newtons per millimeter), load at failure (in newtons), and failure mechanism were recorded. Data were compared using the paired-sample t test.ResultsThe average peak-to-peak displacement for SSR samples was not significantly different from that of SSPR samples (P = .96). Similarly, elongation in the SSR and SSPR groups was not significantly different (P = .82). Stiffness was significantly different between the SSR and SSPR groups (P = .0054): SSR samples were less stiff than SSPR samples. Moreover, SSR samples failed at significantly lower forces than did SSPR samples (P = .028). A larger percentage of failures occurred due to tendon cut-through among SSR samples versus suture breakage among SSPR samples.ConclusionsAn alternative rip-stop technique is presented in this biomechanical model that may assist surgeons to better deal with difficult rotator cuff repairs. Weaving a suture tape as a rip-stop can increase stiffness, achieve higher failure loads when compared with simple suture repair with no rip-stop, and reduce tendon cut-through.Clinical RelevanceThis study provides insight into a variation of rip-stop stitch techniques that may help solve the clinical problem of failure occurring at the suture-tendon interface, specifically tendon cut-through.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.