Abstract

The merge of the power and information infrastructures in smart grid requires increasing number of sensors and online monitoring systems on the high-voltage (HV) transmission towers. These systems are traditionally powered by small solar panels or wind turbines that are weather-dependent. This new contribution involves a full analysis of a complete weather-independent power supply to replace existing approaches. For the first time, the complete system comprising the energy harvesting, wireless power transfer (WPT) and output power stages is practically evaluated using printed circuit board (PCB) resonators embedded in a 35-kV composite insulator. We leverage the nearly constant current, transresistance, and voltage gains characteristics of the PCB domino-resonator structure under different self-oscillating frequencies and propose a coordinated control scheme of transmitter-side and receiver-side converters to regulate the constant current (CC) or constant voltage (CV) through entire charging process. Any current surge caused by the burst operation of the active rectifier on the receiver side triggers a transition between different self-oscillating operations on the transmitter side, leading to operating region extension of the active rectifier. Thus, the proposed system can easily adjust the output to follow different battery charging profiles without wireless communication between the transmitter and receiver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.