Abstract

Background:Air Traffic Control (ATC) is a complex and demanding process, exposing Air Traffic Controllers (ATCs) to high stress. Recently, efforts have been made in ATC to maintain safety and efficiency in the face of increasing air traffic demands. Computer simulations have been a useful tool for ATC training, improving ATCs skills and consequently traffic safety.Objectives:This study aims to: a) evaluate psychophysiological indices of stress in an ATC simulation environment using a wearable biomonitoring platform. In order to obtain a measure of ATCs stress levels, results from an experimental study with the same participants, that included a stress-induced task were used as a stress ground truth; b) understand if there are differences in stress levels of ATCs with different job functions (“advisors”vs“operationals”) when performing an ATC Refresher Training, in a simulator environment.Methods:Two studies were conducted with ATCs: Study 1, that included a stress-induced task - the Trier Social Stress Test (TSST) and Study 2, that included an ATC simulation task. Linear Heart Rate Variability (HRV) features from ATCs were acquired using a medical-grade wearable Electrocardiogram (ECG) device. Self-reports were used to measure perceived stress.Results:TSST was self-reported as being much more stressful than the simulation task. Physiological data supports these results. Results from study 2 showed more stress among the “advisors” group when comparing to the “operational” group.Conclusion:Results point to the importance of the development of quantified Occupational Health (qOHealth) devices to allow monitoring and differentiation of ATCs stress responses.

Highlights

  • Air Traffic Controllers (ATCs) are responsible for complex and highly demanding tasks, requiring high levels of knowledge and expertise, combined with high levels of responsibility [1]

  • Results point to the importance of the development of quantified Occupational Health devices to allow monitoring and differentiation of ATCs stress responses

  • Lower values of RMSSD and pNN20, and higher values of Low Frequency (LF)/high frequency (HF) were found inside the “advisors” group, suggesting more stress in this group

Read more

Summary

Introduction

Air Traffic Controllers (ATCs) are responsible for complex and highly demanding tasks, requiring high levels of knowledge and expertise, combined with high levels of responsibility [1]. They are in charge of the safe, ordered and expeditious flow of air traffic in the worldwide Air Traffic Control (ATC) structure [1, 2]. Computer simulations have been a useful tool for ATC trainings and they are currently considered a good method to reveal how ATCs organize cognitive schemes and operational strategies in their real field settings. Computer simulations have been a useful tool for ATC training, improving ATCs skills and traffic safety

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call