Abstract
Although isothermal nucleic acid amplification is advantageous in pathogen detection in resource-limited settings, an electricity-dependent heating module is often required. Here, we developed a wearable microfluidic device combined with recombinase polymerase amplification (RPA) for simple and rapid amplification of HIV-1 DNA using human body heat. The human body temperature at the human wrist varied from 33 to 34 °C in the ambient environment, which is sufficient to perform RPA reactions. With the aid of a cellphone-based fluorescence detection system, this device detected HIV-1 DNA quantitatively ranging from 102 to 105 copies/mL with a log linearity of 0.98 in 24 min. These results demonstrate that this wearable point-of-care (POC) nucleic acid testing method is advantageous over traditional PCR and other isothermal nucleic acid amplification methods in terms of time, portability and independence on electricity. This wearable microfluidic device in conjunction with a cellphone-based fluorescence detection system can be potentially used for the detection of HIV-1 and adapted for POC detection of a broad range of infectious pathogens in resource-limited settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.