Abstract

BackgroundPrevious studies have shown that the gait of patients with type-2 diabetes mellitus is abnormal compared with the healthy group. Currently, a three-dimensional motion analyzer system is commonly used for gait analysis. However, it is challenging to collect data and use in clinical study due to extensive experimental conditions and high price. In this study, we used a wearable gait analysis system (Gaitboter) to investigate the spatial and temporal parameters, and kinematic data of gait in diabetic patients, especially those with peripheral neuropathy. The aim of the study is to evaluate the wearable gait analysis system in diabetic study.Materials and MethodsWe conducted a case–control study to analyze the gait of type 2 diabetes mellitus. Gaitboter was used to detect and collect gait data in the ward of Beijing Chao-yang Hospital, Capital Medical University from June 2018 to October 2018. We collected the gait data of participants (N= 146; 73 patients with type 2 diabetes, 16 with peripheral neuropathy and 57 without peripheral neuropathy, and 73 matched controls). The gait data (stance phase, swing phase, double-foot stance phase, single-foot stance phase, walking cadence, stride length, walking speed, off-ground angle, landing angle, maximum swing angle, minimum swing angle, and foot progression angle) in diabetic patients were recorded and compared with controls. SPSS 22.0 statistical software was used to analyzed the gait parameter data.ResultsWe found that the landing angle and the maximum swing angle of diabetes patients with or without peripheral neuropathy were significantly less than those of the control group (P < 0.05). The walking speed of diabetes patients with peripheral neuropathy is significantly less than those of the control group (P < 0.05).ConclusionThis study confirms that the wearable gait analysis system (Gaitboter) is an ideal system to identify abnormal gait in patients with type 2 diabetes and provides a new device and method for diabetes-related gait research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.