Abstract
Fully-supervised salient object detection (SOD) methods have made great progress, but such methods often rely on a large number of pixel-level annotations, which are time-consuming and labour-intensive. In this paper, we focus on a new weakly-supervised SOD task under hybrid labels, where the supervision labels include a large number of coarse labels generated by the traditional unsupervised method and a small number of real labels. To address the issues of label noise and quantity imbalance in this task, we design a new pipeline framework with three sophisticated training strategies. In terms of model framework, we decouple the task into label refinement sub-task and salient object detection sub-task, which cooperate with each other and train alternately. Specifically, the R-Net is designed as a two-stream encoder-decoder model equipped with Blender with Guidance and Aggregation Mechanisms (BGA), aiming to rectify the coarse labels for more reliable pseudo-labels, while the S-Net is a replaceable SOD network supervised by the pseudo labels generated by the current R-Net. Note that, we only need to use the trained S-Net for testing. Moreover, in order to guarantee the effectiveness and efficiency of network training, we design three training strategies, including alternate iteration mechanism, group-wise incremental mechanism, and credibility verification mechanism. Experiments on five SOD benchmarks show that our method achieves competitive performance against weakly-supervised/unsupervised methods both qualitatively and quantitatively. The code and results can be found from the link of <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://rmcong.github.io/proj_Hybrid-Label-SOD.html</uri> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.