Abstract

We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a weakly robust polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths that either (i) computes a clique partition or (ii) gives a certificate that the graph is not a UDG; for the case (i) it computes a clique partition having size that is guaranteed to be within (1+e) of the optimum size if the input is UDG; however if the input is not a UDG it either computes a clique partition as in case (i) with no guarantee on the quality of the clique partition or detects that it is not a UDG. Noting that recognition of UDG’s is NP-hard even if we are given edge lengths, our PTAS is a weakly-robust algorithm. Our algorithm can be transformed into an $O(\frac{\log^{*} n}{{\varepsilon}^{O(1)}})$ time distributed PTAS. We consider a weighted version of the clique partition problem on vertex-weighted UDGs that generalizes the problem. We note some key distinctions with the unweighted version, where ideas useful in obtaining a PTAS break down. Yet, surprisingly, it admits a (2+e)-approximation algorithm for the weighted case where the graph is expressed, say, as an adjacency matrix. This improves on the best known 8-approximation for the unweighted case for UDGs expressed in standard form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call