Abstract

We consider a dynamic problem with a short laser impact on a semi-opaque insulated layer with free borders, accounting for the selective absorption of the acoustic spectrum regions by the media. The behavior of the material is modeled by the extended coupled thermoelasticity formulated in the previous work of the series. Following the experimental results, we introduce a weakly nonlinear correction to the thermal expansion coefficient. Thus, we aim to level out the inability of classical thermoelasticity (CTE) to correctly describe the deformation processes in a solid under a high-frequency impact, yet staying within the framework of linear models. The parameters of the system of novel equations can be tuned to fit the experimentally measured data, i.e., the frequency-dependent attenuation coefficient. The series solutions of the extended thermoelasticity problem are compared with those obtained within CTE. In contrast to CTE and in accordance with experiments, the model allows for the simultaneous existence of positive and negative extrema for stress over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.