Abstract

We propose a weakly-coupled ultra-flattened chromatic dispersion few-mode photonic crystal fiber (FM-PCF) supporting 10 vector modes (HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11a</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11b</sub> , TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">21a</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">21b</sub> , TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">31a</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">31b</sub> , EH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11a</sub> , EH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11b</sub> ) which works over a large range of wavelength across the C+L band. We investigate the chromatic dispersion, minimum effective refractive index difference (minΔn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> ), confinement loss, bending loss and differential mode delay (DMD) of the proposed fiber under the influences of design parameters by using the finite element method (FEM). The circular holes in the first ring are replaced by elliptical holes to obtain flattened-chromatic dispersion. And an extra small rectangular defected hole is introduced in the fiber core order to achieve ultra-flattened chromatic dispersion and large minΔn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> . The simulated results show that the designed weakly-coupled FM-PCF can obtain ultra-flattened (dispersion slope < 1.8 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−4</sup> ns/km/nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and large minΔn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> (> 1.6 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−4</sup> ) in the wavelength range of 1520 nm to 1640 nm. And the proposed weakly-coupled FM-PCF also has ultra-low confinement loss (<10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−9</sup> dB/km) and good bending resistance. In summary, the proposed weakly-coupled FM-PCF has the potential applications for large-capacity MDM communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call