Abstract

We obtain general weak existence and stability results for stochastic convolution equations with jumps under mild regularity assumptions, allowing for non-Lipschitz coefficients and singular kernels. Our approach relies on weak convergence in Lp spaces. The main tools are new a priori estimates on Sobolev–Slobodeckij norms of the solution, as well as a novel martingale problem that is equivalent to the original equation. This leads to generic approximation and stability theorems in the spirit of classical martingale problem theory. We also prove uniqueness and path regularity of solutions under additional hypotheses. To illustrate the applicability of our results, we consider scaling limits of nonlinear Hawkes processes and approximations of stochastic Volterra processes by Markovian semimartingales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.