Abstract

For locally compact abelian groups it is known that if the product of the measures of the support of an $L^1$-function $f$ and its Fourier transform is less than $1$, then $f = 0$ almost everywhere. This is a weak version of the classical qualitative uncertainty principle. In this paper we focus on compact groups. We obtain conditions on the structure of a compact group under which there exists a lower bound for all products of the measures of the support of an integrable function and its Fourier transform, and conditions under which this bound equals $1$. For several types of compact groups, we determine the exact set of values which the product can attain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.