Abstract
We give simple proofs that a weak solution u of the Navier–Stokes equations with H 1 initial data remains strong on the time interval [0, T] if it satisfies the Prodi–Serrin type condition u ∈ L s (0, T;L r,∞(Ω)) or if its L s,∞(0, T;L r,∞(Ω)) norm is sufficiently small, where 3 < r ≤ ∞ and (3/r) + (2/s) = 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.