Abstract
We develop a fully discrete weak Galerkin finite element method for the initial-boundary value problem of two-dimensional sub-diffusion equation with Caputo time-fractional derivative. A traditional $L_1$ discretization for the Caputo time-fractional derivative and a weak Galerkin scheme for the space integer differential operator are employed. We prove the stability of the numerical method and establish the error estimate in $L^2$ and discrete $H^1$ norms, respectively. Some numerical results are reported to confirm the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.