Abstract

Remote health monitoring framework using wireless body area network with ubiquitous support is gaining popularity. However, faulty sensor data may prove to be critical. Hence, faulty sensor detection is necessary in sensor-based health monitoring. In this paper, an artificial neural network (ANN)-based framework for learning about health condition of patients as well as fault detection in the sensors is proposed. This experiment is done based on human cardiac condition monitoring setup. Related physiological parameters have been collected using wearable sensors from different people. These data are then analyzed using ANN for health condition identification and faulty node detection. Libelium MySignals HW (eHealth Medical Development Shield for Arduino) v2 sensors such as ECG sensor, pulse oximeter sensor, and body temperature sensor have been used for data collection and ARDINO UNO R3 as microcontroller device. ANN method detects faulty sensor data with classification accuracy of 98%. Experimental results and analyses are given to prove the claim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.