Abstract

A Neumann boundary value problem of plane elasticity problem in the exterior circular domain is reduced into an equivalent natural boundary integral equation and a Poisson integral formula with the DtN method. Using the trigonometric wavelets and Galerkin method, we obtain a fast numerical method for the natural boundary integral equation which has an unique solution in the quotient space. We decompose the stiffness matrix in our numerical method into four circulant and symmetrical or antisymmetrical submatrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT) instead of the inverse matrix. Examples are given for demonstrating our method has good accuracy of our method even though the exact solution is almost singular.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.