Abstract

Target acquisition performance depends strongly on the contrast of the target. The Targeting Task Performance (TTP) metric, within the Night Vision Integrated Performance Model (NV-IPM), uses a combination of resolution, signal-to-noise ratio (SNR), and contrast to predict and model system performance. While the dependence on resolution and SNR are well defined and understood, defining a robust and versatile contrast metric for a wide variety of acquisition tasks is more difficult. In this correspondence, a wavelet contrast metric (WCM) is developed under the assumption that the human eye processes spatial differences in a manner similar to a wavelet transform. The amount of perceivable information, or useful wavelet coefficients, is used to predict the total viewable contrast to the human eye. The WCM is intended to better match the measured performance of the human vision system for high-contrast, low-contrast, and low-observable targets. After further validation, the new contrast metric can be incorporated using a modified TTP metric into the latest Army target acquisition software suite, the NV-IPM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.