Abstract
Magnetic particle imaging (MPI) is a preclinical imaging technique capable of visualizing the spatio-temporal distribution of magnetic nanoparticles. The image reconstruction of this fast and dynamic process relies on efficiently solving an ill-posed inverse problem. Current approaches to reconstruct the tracer concentration from its measurements are either adapted to image characteristics of MPI but suffer from higher computational complexity and slower convergence or are fast but lack in the image quality of the reconstructed images. In this work we propose a novel MPI reconstruction method to combine the advantages of both approaches into a single algorithm. The underlying sparsity prior is based on an undecimated wavelet transform and is integrated into a fast row-action framework to solve the corresponding MPI minimization problem. Its performance is numerically evaluated against a classical FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) approach on simulated and real MPI data. The experimental results show that the proposed method increases image quality with significantly reduced computation times. In comparison to state-of-the-art MPI reconstruction methods, our approach shows better reconstruction results and at the same time accelerates the convergence rate of the underlying row-action algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.