Abstract

In this work, the classification of brain tumours in magnetic resonance images is studied by using optimal texture features. These features are used to classify three sets of brain images—normal brain, benign tumour and malignant tumour. A wavelet-based texture feature set is derived from the region of interest. Each selected brain region of interest is characterized with both its energy and texture features extracted from the selected high frequency subband. An artificial neural network classifier is employed to evaluate the performance of these features. Feature selection is performed by a genetic algorithm. Principal component analysis and classical sequential methods are compared against the genetic approach in terms of the best recognition rate achieved and the optimal number of features. A classification performance of 98% is achieved in a genetic algorithm with only four of the available 29 features. Principal component analysis and classical sequential methods require a larger feature set to attain the similar classification accuracy of 98%. The optimal texture features such as range of angular second moment, range of sum variance, range of information measure of correlation II and energy selected by the genetic algorithm provide best classification performance with lower computational effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.