Abstract
In this paper, a wavelet-based method is developed for wave-propagation analysis of a generic multi-coupled one-dimensional periodic structure (PS). The formulation is based on the periodicity condition and uses the dynamic stiffness matrix of the periodic cell obtained from finite-element (FE) or other numerical methods. Here, unlike its conventional definition, the dynamic stiffness matrix is obtained in the wavelet domain through a Daubechies wavelet transform. The proposed numerical scheme enables both time- and frequency-domain analysis of PSs under arbitrary loading conditions. This is in contrast to the existing Fourier-transform-based analysis that is restricted to frequency-domain study. Here, the dispersion characteristics of PSs, especially the band-gap features, are studied. In addition, the method is implemented to simulate time-domain wave response under impulse loading conditions. The two examples considered are periodically simply supported beam and periodic frame structures. In all cases, the responses obtained using the present periodic formulation are compared with the response simulated using the FE model without the periodicity assumption, and they show an exact match. This validates the accuracy of the periodic assumption to obtain the time- and frequency-domain wave responses up to a high-frequency range. Apart from this, the proposed method drastically reduces the computational cost and can be implemented for homogenization of PSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.