Abstract

The rainfall–runoff modelling being a stochastic process in nature is dependent on various climatological variables and catchment characteristics and therefore numerous hydrological models have been developed to simulate this complex process. One approach to modelling this complex non-linear rainfall–runoff process is to combine the outputs of various models to get more accurate and reliable results. This multi-model combination approach relies on the fact that various models capture different features of the data, and hence combination of these features would yield better result. This study for the first time presented a novel wavelet based combination approach for estimating combined runoff The simulated daily output (Runoff) of five selected conventional rainfall–runoff models from seven different catchments located in different parts of the world was used in current study for estimating combined runoff for each time period. Five selected rainfall–runoff models used in this study included four data driven models, namely, the simple linear model, the linear perturbation model, the linearly varying variable gain factor model, the constrained linear systems with a single threshold and one conceptual model, namely, the soil moisture accounting and routing model. The multilayer perceptron neural network method was used to develop combined wavelet coupled models to evaluate the effect of wavelet transformation (WT). The performance of the developed wavelet coupled combination models was compared with their counterpart simple combination models developed without WT. It was concluded that the presented wavelet coupled combination approach outperformed the existing approaches of combining different models without applying input WT. The study also recommended that different models in a combination approach should be selected on the basis of their individual performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.