Abstract
A computerized scheme to detect clustered microcalcifications in digital mammograms has been developed. Detection of individual microcalcifications in regions of interest (ROIs) was also performed. The mammograms were previously classified into fatty and dense, according to their breast tissue. The most appropriate wavelet basis and reconstruction levels were selected. To select the wavelet basis, 40 profiles of microcalcifications were decomposed and reconstructed using different types of wavelet functions and different combinations of wavelet coefficients. The symlets with a basis of length 8 were chosen for fatty tissue. For dense tissue, the Daubechies' wavelets with a four-element basis were employed. Two methods to detect individual microcalcifications were evaluated: (a) two-dimensional wavelet transform, and (b) one-dimensional wavelet transform. The second technique yielded the best results, and was used to detect clustered microcalcifications in the complete mammogram. When detecting individual microcalcifications by using two-dimensional wavelet transform we have obtained, for fatty ROIs, a sensitivity of 71.11% at a false positive rate of 7.13 per image. For dense ROIs the sensitivity was 60.76% and the false positive rate, 7.33. The areas (A1) under the AFROC curves were 0.33+/-0.04 and 0.28+/-0.02, respectively. The one-dimensional wavelet transform method yielded 80.44% of sensitivity and 6.43 false positives per image (A1=0.39+/-0.03) for fatty ROIs, and 62.17% and 5.82 false positives per image (A1=0.37+/-0.02) for dense ROIs. For the detection of clusters of microcalcifications in the entire mammogram, the sensitivity was 80.00% with 0.94 false positives per image (A1=0.77+/-0.09) for fatty mammograms, and 72.85% of sensitivity at a false positive detection rate of 2.21 per image (A1=0.64+/-0.07) for dense mammograms. Globally, a sensitivity of 76.43% at a false positive detection rate of 1.57 per image was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.