Abstract
Diaphragmatic electromyogram (EMGdi) signals convey important information on respiratory diseases. In this paper, an adaptive filter for removing the electrocardiographic (ECG) interference in EMGdi signals based on wavelet theory is proposed. Power spectrum analysis was performed to evaluate the proposed method. Simulation results show that the power spectral density (PSD) of the extracted EMGdi signal from an ECG corrupted signal is within 1.92% average error relative to the original EMGdi signal. Testing on clinical EMGdi data confirm that this method is also efficient in removing ECG artifacts from the corrupted clinical EMGdi signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.