Abstract
ABSTRACTIn this paper, a Galerkin method based on the second kind Chebyshev wavelets (SKCWs) is established for solving the multi-term time fractional diffusion-wave equation. To do this, a new operational matrix of fractional integration for the SKCWs must be derived and in order to improve the computational efficiency, the hat functions are proposed to create a general procedure for constructing this matrix. Implementation of these wavelet basis functions and their operational matrix of fractional integration simplifies the problem under consideration to a system of linear algebraic equations, which greatly decreases the computational cost for finding an approximate solution. The main privilege of the proposed method is adjusting the initial and boundary conditions in the final system automatically. Theoretical error and convergence analysis of the SKCWs expansion approve the reliability of the approach. Also, numerical investigation reveals the applicability and accuracy of the presented method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.