Abstract

This paper considers rerouting and minimization of incurred disruption due to rerouting in a wide-area all-optical wavelength division multiplexed (WDM) network with random circuit arrivals and departures. One limitation of such a network is the wavelength continuity constraint imposed by the all-optical cross-connect switches which do not allow a circuit to be placed on a nonwavelength-continuous route. Wavelength rerouting is proposed to rearrange certain existing circuits to create a wavelength-continuous route in order to accommodate a new circuit. To reduce the disruption period, move-to-vacant wavelength-retuning (MTV WR) is used as the basic operation of circuit migration, in which a circuit is moved to a vacant wavelength on the same path, and parallel MTV WR rerouting is used to reroute multiple circuits. An optimal algorithm is developed to minimize the weighted number of rerouted circuits with parallel MTV WR rerouting. In our test network, wavelength rerouting can effectively alleviate the wavelength continuity constraint by reducing call blocking probability an average of 30 % while reducing the number of rerouted circuits and the disruption period,.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.