Abstract

Fiber-based laser heating systems offer high flexibility and are increasingly used in high-pressure/high-temperature research. Previous fiber-based laser heating systems were based on lasers delivering radiation with 1-μm wavelength that show unfavorable heating characteristics for many sample materials. We report on the development and first experiments of a waveguide (fiber)-based CO2-laser heating system that can be used in a flexible manner for high-temperature research and for high-pressure/temperature experiments when combined with diamond-anvil cells. The waveguide-based CO2-laser heating system allows convenient heating of optically transparent samples without the need for adding an additional laser absorber. In a pilot experiment, the flexible heating system has been installed on a Brillouin scattering system to measure high-temperature sound-wave velocities in single-crystal MgO. The waveguide-based CO2-laser heating system offers perspectives for a variety of scientific applications, most importantly those that require the use of synchrotron facilities where space is limited and flexible solutions are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.